

## AE 6769 / ME 6769 – Linear Elasticity

## Spring 2025

| Credit:                               | 3-0-3 (3 credits, 3 hours per week)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prerequisites:                        | Graduate standing; Principles of Continuum Mechanics (ME6201)<br>or equivalent (recommended); Mechanics of Deformable Bodies<br>(COE3001) or equivalent (recommended)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instructor:                           | Dr. Stephane Berbenni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Email: stephane.berbenni@georgiatech-metz.fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Office Hours:<br>Textbook (optional): | <ul> <li><i>TBD</i></li> <li>Barber, J.R., <i>Elasticity</i>, Kluwer Academic Publishers, Dordrecht, 2002 (2<sup>nd</sup> edition).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Other reference book                  | <ul> <li>s: • Bower, A.F., Applied Mechanics of Solids, CRC Press, 2009;<br/>(http://solidmechanics.org/)</li> <li>• Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd<br/>Ed., McGraw-Hill, 1970;</li> <li>• Love, A.E.H., A Treatise on the Mathematical Theory of<br/>Elasticity, 4th Ed., Dover, 1944;</li> <li>• Landau, L.D., and Lifschitz, E.M., Theory of Elasticity (English<br/>Translation by Sykes, J.B., and Reid, W.S.), Pergamon/Addison<br/>Wesley, 1959. (physicists' view of elasticity)</li> </ul>                                                                                                                                                                                                                                   |
| Objectives:                           | This class will introduce governing equations of linear elasticity<br>and will focus on solutions of boundary value problems in two and<br>three dimensions using several formulations and methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Topics:                               | <ul> <li>-Review of continuum mechanics and field equations (3 weeks):<br/>Strain, stress, strain compatibility, stress equilibrium, linear<br/>elasticity constitutive law, uniqueness of solution, boundary<br/>conditions.</li> <li>-Two-dimensional elasticity (9 weeks):</li> <li>*Plane strain, plane stress, Airy stress function method,</li> <li>*Problems in Cartesian coordinates: rectangular beams, general<br/>solution,</li> <li>*Problems in polar coordinates: circular hole problems, Michell<br/>general solution, contact problems</li> <li>*Singular solutions: dislocations, cracks, Kelvin problem.</li> <li>Three-dimensional elasticity problem (2 weeks)</li> <li>*Principle of virtual work</li> <li>*Green's function method,</li> </ul> |

|                      | * Galerkin vector and applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assignments:         | Homework assignments will be graded, and the solutions will be<br>posted on Canvas. No late assignments will be accepted (except<br>acceptable reason). All class handouts will be posted on Canvas.                                                                                                                                                                                                                                                                                                                                                                                                      |
| Evaluation:          | 30% Homework<br>30% Mid-term<br>40% Final Exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Grading Scale        | Your final grade will be assigned as a letter grade according to<br>the following scale:<br>A 90-100%<br>B 80-89%<br>C 70-79%<br>D 60-69%<br>F 0-59%                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Important dates:     | 1st class day: <i>TBD</i> (introductive lecture)<br>Last instructional class day: <i>TBD</i><br>Drop day: <i>TBD</i><br>Mid-term examination: <i>TBD</i><br>Recess week: <i>TBD</i><br>Final examination: 2 hours 50 minutes ( <i>TBD</i> during the<br>semester). The final examination week is <i>TBD</i> .                                                                                                                                                                                                                                                                                             |
| Academic Integrity:  | Georgia Tech aims to cultivate a community based on trust,<br>academic integrity, and honor. Students are expected to act<br>according to the highest ethical standards. For information on<br>Georgia Tech's Academic Honor Code, please visit<br><u>http://www.catalog.gatech.edu/policies/honor-code/</u> or<br><u>http://www.catalog.gatech.edu/rules/18/</u> . Any student suspected<br>of cheating or plagiarizing on a quiz, exam, or assignment will be<br>reported to the Office of Student Integrity, who will investigate the<br>incident and identify the appropriate penalty for violations. |
| Student-Faculty Expe | ctations Agreement:<br>At Georgia Tech we believe that it is important to strive for an<br>atmosphere of mutual respect, acknowledgement, and<br>responsibility between faculty members and the student body.<br>See <u>http://www.catalog.gatech.edu/rules/21/</u> for an articulation of<br>some basic expectation that you can have of me and that I have                                                                                                                                                                                                                                              |

of you. In the end, simple respect for knowledge, hard work, and cordial interactions will help build the environment we seek. Therefore, I encourage you to remain committed to the ideals of Georgia Tech while in this class.